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Abstract. The creation and annihilation of traffic jams are studied by a computer simulation.
The one-dimensional {ip) fully-asymmetric exclusion model with open boundaries for parallel
update is extended to take into account stochastic transition of particles (cars) where a particle
moves ahead with transition probability p; if the forward nearest neighbour is not occupied.
Near p, = 1, the system is drived asymptotically into a steady state exhibiting a self-organized
criticality. In the self-organized critical state, a traffic jam (start—stop wave) and an empty
wave are created at the same time when a car stops temporarily. The traffic jam disappears by
colliding with the empty wave. The coalescence process between traffic jams and empty waves
is described by the ballistic annihilation process with pair creation. The resulting problem near
o = 11s consistent with the ballistic process in the context of (D crystal growth studied by Krug
and Spuhn. The typical lifetime (m) of start-stop waves scales as (m} = 8p7 %540 whore
Apy =1 — pr. 1t is shown that the cumulative distribution N,,{Ap;) of lifetimes satisfies the
scaling form N, {ap:) = Apl! fmAph3), Also, the typical interval (s} between consecutive
traffic jams scales as (s) & Ap_ 0362002 The cumulative interval distribution N (Apy) of traffic
jams satisfies the scaling form N;(Ap;) = apP3a(saph5), For py < 1, no scaling hoids.

1. Introduction

The 1D exclusion model is one of the simplest examples of a driven system. The maodel has
been extensively investigated to understand systems of interacting particles [1-5]. The ID
exclusion model is used to study the microscopic structure of shocks [6,7] and is closely
linked to growth processes [8-11]. The 1D fully asymmetric simple-exclusion model can
be formulated into traffic flow problems on a highway [12]. The 1D exclusion model
with parailel update is consistent with the deterministic cellular automaton (CA) 184 in the
‘classification by Wolfram [13]. The 2D versions of the asymmetric simple-exclusion model
were applied to the traffic-jam problem in an entire city [14-16].

CA models are being applied successfully to simulations of traffic. Nagel and
Schreckenberg [12] extended the 1D fully-asymmetric exclusion model to take car velocity
into account in order io simulate freeway traffic. Nagatani [17] studied the clustering
of traffic in the extended asymmetric exclusion model taking into account the difference
between the inherent velocities of individual cars. Ben-Naim et al [18] analysed the kinetic
clustering of cars in a simple aggregation model.

Recently, phenomena exhibiting self-organized criticality have attracted considerable
attention {19,20]. Bak et al [19] introduced the notion of self-organized criticality. They
showed that the sandpile naturally evolves into a critical state through a self-organization
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process. This critical state is characterized by no intrinsic length or time scales. Nagel
and Herrmann [21] showed that the open-boundary version of the 1D traffic flow exhibits
a sclf-organized criticality, providing enough input and output of cars at the boundaries.
Nagel and co-worker [22,23] studied the lifetimes of simulated traffic jams for freeway
traffic and found emergent traffic jamis with a self-similar appearance. However, the CA
model is not simple since it is described by the CA rule of seven states. The dependence of
scaling behaviour upon the system size is unclear. Nagatani [24] showed that introducing
injection or extraction into the 1D fully-asymmetric exclusion model with periodic boundary
drives the system asymptotically into a steady state exhibiting a self-organized criticality.
In the 1D model with periodic boundary, the injection or extraction of particles maintain the
seif-organized critical state. It was shown that the typical jam-interval {s) scales as

(sy~ LY with v = 0.62 £0.04 )
and the jam-interval distribution n,{L) satisfies the finite-size scaling form

ne(L) = L™ f(s/L") with 8 = 2v 2
where L is the system size. The typical lifetime (m) of jams scales as

{m) =~ L". 3
The lifetime distribution n, (L) satisfies the finite-size scaling form

(LY~ L™ g(m/L") with = 1 4, @)

It was also found that adding a temporary stopping of particles to the 1D fully-asymmetric
exclusion model with open boundaries drives the system asmptotically into a steady state
exhibiting a self-organized criticality {25]. In the 1D mode! with open boundaries, the self-
organized critical state is maintained without injection or extraction of particles. The typical
interval {s) and lifetime (m} scale in the same form as equations (1) and (3) with a different
value for the scaling exponent v = (.5. The interval and lifetime distributions also satisfy
the same finite-size scaling form as equations (2) and (4) with a different value for the
scaling exponent v = 0.5. Comparison with the work of Nagel [22,23] is difficult since the
definition of jam size in [22,23] is very different from that used here.

In this paper, I present the ID stochastic fully-asymmetric exclusion model to take
into account the stochastic transition of particles. A particle moves ahead with transition
probability p if the forward nearest neighbour is unoccupied. The model describes the 1D
traffic flow on a highway. Cars flow from the inlet and fiow out at the exit on a highway
where cars move or sometimes stop. When p, = 1, the model is consistent with the ID
deterministic fully-asymmetric exclusion model. At p, = 1, the traffic flow is driven into
the maximal velocity phase in which cars are distributed with a particular configuration
with alternate spacing. Then, if a car stops temporarily, a traffic jam and an empty wave
are created. Near p; = 1, the traffic jams and empty waves appear one after another. The
traffic jam disappears by colliding with the empty wave. The creation and annihilation of
traffic jams reaches a steady state. The process is described by the ballistic annihilation
process [26,27] with pair creation. The resnlting problem near p, = 1 agrees with that in
the context of one-dimensional crystal growth which was studied by Xrug and Spohn [28].
We study the scaling behaviour of the interval and lifetime. We show that the self-organized
criticality occurs near p, = 1 without introducing injection or temporary stopping. We find
that the interval and lifetime distributions satisfy scaling forms different from equations (2)
and (4). However, the scaling does not hold for p, < 1.

The organization of the paper is as follows. In section 2 we present the model and the
simulation method. In section 3 we give the simulation result. In section 4 we compare our
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result with the previous results obtained from the different models. Section 5 presents the
summary.

2. Model and simulation

We consider the traffic flow of cars in which cars flow from the inlet and flow out at the
exit on a highway with fluctuating velocity. Car velocity fluctuates due to irregular road
conditions, the whim of drivers or interference with other cars. Cars flow smoothly without
fluctuation of car velocity. The fluctuating velocity induces an irregular traffic flow into
a smooth flow of cars. We study the irregular traffic flow. We present a iD stochastic
CA model of traffic flow on a highway. We extend the D deterministic fully-asymmetric
simple-exclusion model with open boundaries for parallel update to take fluctuating velocity
into account. Its fluctuating velocity is taken into account as the stochastic transition of
particles in the ID fully-asymmetric exclusion model. The 1D fully-asymmetric exclusion
model, which describes a system of particles hopping ina preferred direction with a hard
core interaction, was solved exactly in the case of open boundaries [1]. In the model, a
particle is added at the inlet site with probability « if the inlet site is empty and a particle
is removed from the exit site with probability 8 if this site is occupied. It is known that the
maximal current (J = ) phase appears if @ >  and 8 > L.

We consider the case of « = 8 = 1. In the 1D deterministic simple-exclusion model
with open boundaries for parallel update, the maximal current is given by % In the maximal
current phase, particles move with the maximal velocity 1. particles are distributed in the
configuration with alternate spacing and the density of particles is % In our stochastic
model, particles move ahead with probability p; if the forward nearest neighbour is empty,
or otherwise, particles stop with probability ! — p,. Particles move or stop stochastically. In
the limit of p, = 1, our model reduces to the ID deterministic simple-exclusion model. Near
p. = 1, particles move close to the maximal current phase. Some particles stop temporarily.
Then, a traffic jam (start—stop wave) and an empty wave are created at the same time. The
start-stop wave consists of two connected particles and propagates backward. The empty
wave consists of two connected empty sites and propagates forward. When the start—stop
waves collide with the empty waves, they disappear. The start—stop and empty waves appear
one after another. Thus, introducing stochastic transition into the deterministic asymmetric
exclusion model drives the system into a steady state. We study the scaling behaviour of
the creation and disappearance of the start-stop waves in the steady state.

. Qur stochastic CA model is defined on a 1D lattice of L sites with open boundaries. Each
site is either empty or occupied by one particle (or one car). For an arbitrary configuration,

one update of the system is performed in parallel for all cars. Particles move ahead by one

step with probability p, unless the forward nearest-neighbour site is occupied by another

particle, otherwise they stop with probability 1 — p.. If particles are blocked ahead by

another particle, they do not move even if the blocking particle moves out of the site during

the same time step. A particle is added at the inlet site 1 if the inlet site is empty. If the
exit site L 15 occupied by one particle, its particle is removed from the exit site.

3. Simulation result

We have performed simulations of the stochastic CA model starting with an ensemble of
random initial conditions where the system size is L = 10°-10° and the initial density of
particles is pp = 0.0-1.0. Each run is calculated up to 10*-10° time steps. For illustration,
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Figure 1. The typical patterns of particles up to 500 time steps where the system size is
1 = 300. The horizontal and vertical directions indicate space and time respectively. A particle
is indicated by a dot. The trajectory of a particle is represented by a curve. The grey region,
is the area in which particles move with the interval of two sites. The black regton represents
the start-stop wave in which particles are stopped because their progress is blocked by another
particle, (a) The pattern for the transition probability py = 0.99. The white region represents
the empty wave. The start-stop and empty waves are created at the same time. The stari—stop
wave disappears by colliding with the empty wave. (b) The pattern for the transition probability
= 0.9.

figure 1 shows the typical patterns for the initial density po = 0.2 wp to 500 time steps
where the system size is L = 300, Patterns (a) and (b) indicate, respectively, those for the
transition probability p; = 0.99 and 0.9. The horizontal direction indicates the direction in
which particles move ahead. The vertical direction indicates time. A particle is indicated by
a dot. The trajectory of a particle is represented by a curve. In pattern (a), the grey region
indicates that in which particles move with the interval of two sites. The local density of
patticles is p == 0.5, Particles within the region move with the maximal velocity 1. The
black region represents the appearance of a start~stop (or traffic jam) in which particles
are stopped because their progress is blocked by another particle. The start—stop wave
propagates backward and consists of two connected particles. The white region indicates
the appearance of an empty wave which consists of two connected empty sites. Its empty
wave propagates forward. The start—stop wave disappears by colliding with the empty wave.
The coalescence process between the start—stop and empty waves is similar to a ballistic two-
species annihilation reaction, A + B — &. The start-—stop wave (or traffic jam) disappears
with various lifetimes. In the case of Api(=1 — p) < 1 (pattern (a)), the mean density
approaches the value % of a steady state. The start-stop wave appears clearly. Therefore,
it is expected that the scaling phenomenon appears near p, = 1. However, in the case
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(pattern (b}) in which the condition Ap; € 1 is not satisfied, the density fluctuates largely
and the coalescence process between the start—stop and empty waves becomes obscure. The
process in pattern (&) cannot be described by the ballistic annihilation process. Therefore,
the scaling breaks down when the condition Ap, < 1 is not satisfied.
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Figure 2. The log-log plot of the typical lifetime {sn} of start—stop waves against Ap{= 1—p}.
The typical lifetime scales as {m) ~ Ap; %% £ 0.04. ‘
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Figure 3. The log-log plot of the cumulati‘ve. lifetime disteibution N, against lifetime m for
Apy = 0.02, 0.005, 0.003, 0.001, 0.0005 and 0.0003.

We study the scaling behaviour of the lifetimes in the steady state near p, = 1 after a
sufficient number of time steps. We define the typical lifetime (m) of start-stop waves as

<m>aim2nm/fjmnm ’ o ) )

m=1 =1
where m is the lifetime of the start—stop waves and n,, is the lifetime distribution (the
density of stari-stop waves with lifetime m per ane time step). Figure 2 shows the log-log
plot of the typical lifetime {(m} against Api(= 1 — p,). The typical lifetime {m} scales as

(m) = Ap”” with v = 0.54 = 0.04. 6)
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The scaling behaviour of the lifetime depends little on the system size L under the condition
Ap. « 1 and sufficiently large L. The cumulative lifetime distribution N, is defined as

Moz ™

mh=m

Figure 3 shows the log—log plot of the cumulative lifetime distribution N,, against lifetime
m for Ap, = 0.02, 0.005, 0.003, 0.001, 0.0005, 0.0003. We plot the rescaled cumulative
lifetime distribution against the rescaled lifetime. Figure 4 shows the log—log plot of the
rescaled cumulative lifetime distribution N,, Ap; "' against the rescaled lifetime mAp®5*
for the data in figure 3. All data collapse onto a single curve. The cumulative lifetime
distribution satisfies the scaling form

Nn(Ap) = Ap}"! f(mApY™). ®)
Therefore, the lifetime distributicn »,, is described in terms of the scaling form
Nu(Ap) % Apy® f/(mbpl™). )

We study the scaling behaviour of the interval of start—stop waves in the steady state after
a sufficient number of time steps. Its interval is the distance between a start—stop wave and
the next start-stop wave. We define the typical interval (s) of start—stop waves as

{s) = isznx/ isn,T (10}
s=1

=1

where n; is the interval distribution (or the density of start-stop waves with interval 5),
Figure 5 shows the log—log plot of the typical interval (s) against Ap,. The interval {s)
scales as '

(s) ~ ApTY with v/ = 0.50 £ 0.04. (11)

The scaling exponent v’ of the interval agrees with the exponent v of the lifetime within
numerical accuracy. The cumulative interval distribution N, is defined as

Ny=3 B a2)

where n; is the interval distribution. Figure 6 shows the log-log plot of the cumulative
interval distribution N, against interval s for Ap, = 0.02, 0.01, 0.005, 0.002, 0.001, 0.0005.
We plot the rescaled cumulative interval distribution against the rescaled interval. Figure 7
shows the log—log plot of the rescaled cumulative interval distribution N;Ap; 03 against
the rescaled interval sAp®* for the data in figure 6. All data collapse onto a single curve.
The cumulative interval distribution satisfies the scaling form

N(&po = ApFg(s5p) ). (13)
Therefore, the interval distribution is described by the scaling form

ns(Ap) ~ AplPg (s ApY). (14)
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Fignre 4. The log-log plot of the rescaled cumulative lifetime distribution Ny Ap; ' against

the rescaled lifetime mApi* for the data in figure 3.
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Figure 5. The lo_g—log plot of the typical interval {s) of start—stop waves against Ap,. The
typical interval scales as (s} = ap;Uj“iﬂ-“‘*_

4. Discussion

We discuss our results with the previous results obtained from other models. Krug and
Sphon [9] gave a mapping between the rough surface problem and CA model 184. The
mapping corresponds to the deterministic case of p; = 1. The random initial configuration
with density 0.5 evolves to a particular configuration with the alternate spacing which
corresponds to the flat surface. The configuration can be described as a pairwise ballistic
annihilation process, the ‘particles’ and ‘holes’ (‘traffic jams’ and ‘empty waves’ in the
traffic terminology used here) being pairs of 1’s and 0's. In the process, pairs of particles
and holes are not newly created and a random initial state is relaxed to the ‘ordered’
antiferromagnetic final configuration. In the present paper, pairs of particles and holes are
created with a small probability Ap; near p, = 1. However, for p; < 1, the pairwise
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Figure 6. The log-log plot of the cumulative interval distribution Ny against the interval s for
Ap, = 0.02, 0.01, 0.005, 0.002, 0.001 and (0.0005.
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Figure 7. The log-log plot of the rescaled cumulative interval distribution N; Apy ™0 against
the rescaled interval s Ap™ for the data in figure 6.

creation of particles and holes does not always cccur. The resulting problem near p; = 1—
two-speed ballistic annihilation with pair creation—was studied in the context of 1D crystai
growth where the two species of particles correspond to up and down steps on the surface
and pair creation corresponds to nucleation of islands [28].

Following the analysis of Krug and Spohn [28], we derive the value of the scaling
exponent v. In the steady state, the particle and hole positions are uncorrelated and the total
density in the steady state is obtained from a simple balance equation. Let p,., po_ denote
the densities of the two species. In the steady state, the creation rate Ap, is balanced by
the pairwise annihilation rate 2p, g where the particles move with unit velocity. In the
symmetric case g, = p. of interest here, this leads immediately to

p=pr+p_=2Ap. (15)
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Since the typical distance between traffic jams {s} ~ 1/p, it follows that the exponent
v/ == 1/2 in equation (11) exactly. Moreover, it is clear from the ballistic nature of the
process that lifetimes and distances scale in the same way, so that v = v'. Also, the
exponent of the prefactor of the distribution (14) is simply set by the sum rule } sn; = L
to be 2v =1.

‘We consider the boundary condition. The open boundaries nsed here drive the system to
the ‘critical’ density 1 for p, = 1, as was first shown by Krug [29] for the fully-stochastic
asymmetric simple exclusion process and therefore fo ensure symmetry between ‘traffic
jams’ and ‘empty waves’ (p4. = p—). The same behaviour would be observed in a system
with periodic boundary conditions prepared at density 1/2.

We consider the limit of Ap; = 1/L in which a car stops temporarily over L sites per
unit time. By replacing Ap, with 1/L in equation (6), the typical lifetime {m) of traffic
jams scales as

(m) =~ LY with v = (.54 (16)

:

By replacing Ap, with 1/L in equation (§8), the cumulative lifetime dlstnbution N (L)
satisfies the finite-size scaling form

N (L) ~ L™P f(mL™) with 8 = 1.1. 7 (17)

Similarly, by replacing Ap, with 1/L in equations (11} and (13), the typical interval {s}
and the cumulative interval distribution N, (L) scale respectively as

(s} = L0 - (18)
N((L) ~ L%0g(sL™*%). (19)

These results (16)—-(19) are consistent with the results obtained from the previous model
[25] in which a temporary stopping of a particle was added to the 1D fully-asymmetric
exclusion model with open boundaries. The scaling relation B = 2v was derived from a
simple scaling argument [25].

In the cumulative lifetime distribution (8), the scaling function f{x) is not power law
even for x <« 1. The scaling (8) is due to the creation and annihilation of traffic jams
near py = 1. For Ap, < 1, the lifetime distribution scales by Ap,. However, the lifetime
distribution in the cA model of Nagel and co-worker [22, 23] is presented by a power law.
Traffic jams are not deseribed by the ballistic annihilation process with creation. The scaling
structure of our model is definitely different from that obtained by Nagel. Our model is
very simple but the model of Nagel is complex. A comparison between our model and the
model of Nagel is difficult since the definition of jam size in [22,23] is very different from
the one used here.

5. Summary

We have presented the 1D asymmetric exclusion model with stochastic transition probability
p for freeway traffic. We found that near p, = 1, the start-stop waves appear with various
sizes and the system is driven asymptotically into a steady state exhibiting a self-organized
criticality. We have investigated the scaling behaviours of the lifetime and interval in: start—
stop waves. We have shown that the typical lifetime {m} and typical interval (s} scale as
{m) = (s} = Ap;" with v = 0.5. We found that the lifetime and interval distributions
satisfy the scaling forms (9) and (14).
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