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Abstract. The creation and annihilation of tnffic jams are studied by a computer simulation. 
The one-dimensional (ID) fully-asymmetric exclusion model with open boundaries for parallel 
update is extended to take into account Stochastic transition of particles (cars) where a particle 
moves ahead with transition probability pi if the fonvard nearest neighbour is not occupied. 
Near pr = 1. the system is drived asymptotically into a steady state exhibiting a self-organized 
criticality. In the self-organized critical State, a tnmc jam (stut-stop wave) and an empty 
wave are created at the same time when a ear stops temporarily. The trafk jam disappears by 
colliding with the empty wave. The coalescence process h e n  traffic jams and empty waves 
is described by the ballistic annihilation process with pair creation. The resulting problem n e a  
p, = 1 is consistent with the ballistic process in the context of ID crystal growth studied by K m g  
and Spohn. The typical lifetime (m) of start-stop waves scales as ( m )  % Ap;0.54*0.ffl where 
Apt = 1 - pt. It is shown that the cumulative distribution "(Apt)  of lifetimes satislies the 
scaling form "(Apt)  % Ap>'f (n~Ap' ' ,~ ' ) .  Also, the typical interval (s) between consecutive 
traffic jams scales as (si % Ap["5"*un4. The cumulative interval distribution Ns(Apt)  of traffic 
jams satisfies the scaling form N,(Apt)  fi Ap~1~5"g(sApf50) ,  For pt < 1, no scaling holds. 

1. Introduction 

The ID exclusion model is one of the simplest examples of a driven system. The model has 
been extensively investigated to understand systems of interacting particles [1-5]. The 1D 
exclusion model is used to study the microscopic structure of shocks [6,7] and is closely 
linked to growth processes [S-ll]. The ID fully asymmetric simple-exclusion model can 
be formulated into traffic flow problems on a highway [12]. The ID exclusion model 
with parallel update is consistent with the deterministic cellular automaton (CA) 184 in the 
classification by Wolfram [13]. The 2D versions of the asymmetric simple-exclusion model 
were applied to the traffic-jam problem in an entire city [14-161. 

Nagel and 
Schreckenberg [12] extended the 1D fully-asymmetric exclusion model to take car velocity 
into account in order to simulate freeway traffic. Nagatani [17] studied the clustering 
of traffic in the extended asymmetric exclusion model taking into account the difference 
between the inherent velocities of individual cars. Ben-Naim etal [18] analysed the kinetic 
clustering of cars in a simple aggregation model. 

Recently, phenomena exhibiting self-organized criticality have attracted considerable 
attention [19,20]. Bak et al 1191 introduced the notion of self-organized criticality. They 
showed that the sandpile naturally evolves into a critical state through a self-organization 
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CA models are being applied successfully to simulations of traffic. 
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process. This critical state is characterized by no intrinsic length or time scales. Nagel 
and Hermann [21] showed that the open-boundary version of the ID traffic flow exhibits 
a self-organized criticality, providing enough input and output of cars at the boundaries. 
Nagel and co-worker [22,23] studied the lifetimes of simulated traffic jams for freeway 
traffic and found emergent traffic jams with a self-similar appearance. However, the CA 
model is not simple since it is described by the CA rule of seven states. The dependence of 
scaling behaviour upon the system size is unclear. Nagatani [24] showed that introducing 
injection or extraction into the ID fully-asymmetric exclusion model with periodic boundary 
drives the system asymptotically into a steady state exhibiting a self-organized criticality. 
In the ID model with periodic boundary, the injection or extraction of particles maintain the 
self-organized critical state. It was shown that the typical jam-interval (s) scales as 

(s) = L” with U = 0.62 & 0.04 (1) 

n,(L) % L-# f ( s /L”)  with @ = 2u (2) 

(m) x L”. (3) 

n,(L) = L-Yg(m/L”) with y = 1 + U. (4) 

and the jam-interval distribution n,&) satisfies the finite-size scaling form 

where L is the system size. The typical lifetime (m) of jams scales as 

The lifetime distribution n,(L) satisfies the finite-size scaling form 

It was also found that adding a temporary stopping of particles to the 1D fully-asymmetric 
exclusion model with open boundaries drives the system asmptotically into a steady state 
exhibiting a self-organized criticality [Z]. In the ID model with open boundaries, the self- 
organized critical state is maintained without injection or extraction of particles. The typical 
interval (s) and lifetime (m) scale in the same form as equations (I) and (3) with a different 
value for the scaling exponent U = 0.5. The interval and lifetime distributions also satisfy 
the same finite-size scaling form as equations (2) and (4) with a different value for the 
scaling exponent U = 0.5. Comparison with the work of Nagel [22,23] is difficult since the 
definition of jam size in [22,23] is very different from that used here. 

In this paper, I present the I D  stochastic fully-asymmetric exclusion model to take 
into account the stochastic transition of particles. A particle moves ahead with transition 
probability pt if the forward nearest neighbour is unoccupied. The model describes the ID 
traffic flow on a highway. Cars flow from the inlet and flow out at the exit on a highway 
where cars move or sometimes stop. When pt = 1, the model is consistent with the ID 
deterministic fully-asymmetric exclusion model. At p t  = 1, the traffic flow is driven into 
the maximal velocity phase in which cars are distributed with a particular configuration 
with alternate spacing. Then, if a car stops temporarily, a traffic jam and an empty wave 
are created. Near pt = 1, the traffic jams and empty waves appear one after another. The 
traffic jam disappears by colliding with the empty wave. The creation and annihilation of 
traffic jams reaches a steady state. n e  process is described by the ballistic annihilation 
process [26,27] with pair creation. The resulting problem near pt = 1 agrees with that in 
the context of one-dimensional crystal growth which was studied by Krug and Spohn [28]. 
We study the scaling behaviour of the interval and lifetime. We show that the self-organized 
criticality occurs near pr = 1 without introducing injection or temporary stopping. We find 
that the interval and lifetime distributions satisfy scaling forms different from equations (2) 
and (4). However, the scaling does not hold for pt < 1. 

The organization of the paper is as follows. In section 2 we present the model and the 
simulation method. In section 3 we give the simulation result. In section 4 we compare our 
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result with the previous results obtained from the different models. Section 5 presents the 
summary. 

2. Model and simulation 

We consider the traffic flow of cars in which cars flow from the inlet and flow out at the 
exit on a highway with fluctuating velocity. Car velocity fluctuates due to irregular road 
conditions, the whim of drivers or interference with other cars. Cars flow smoothly without 
fluctuation of car velocity. The fluctuating velocity induces an irregular traffic flow into 
a smooth flow of cars. We study the irregular traffic flow. We present a ID stochastic 
CA model of traffic flow on a highway. We extend the ID deterministic fully-asymmetric 
simple-exclusion model with open boundaries for parallel update to take fluctuating velocity 
into account. Its fluctuating velocity is takeu into account as the stochastic transition of 
particles in the I D  fully-asymmetric exclusion model. The ID fully-asymmetric exclusion 
model, which describes a system of particles hopping i n ~ a  preferred direction with a hard 
core interaction, was solved exactly in the case of open boundaries [l]. In the model, a 
particle is added at the inlet site with probability 01 if the inlet site is empty and a particle 
is removed from the exit site with probability p if this site is occupied. It is known that the 
maximal current (J = $) phase appears if 01 > 4 and /J > $. 

We consider the case of (Y = p = 1. In the ID deterministic simple-exclusion model 
with open boundaries for parallel update, the maximal current is given by i. In the maximal 
current phase, particles move with the maximal velocity 1, particles are distributed in the 
configuration with alternate spacing and the density of particles is 4. In our stochastic 
model, particles move ahead with probability pt if the forward nearest neighbour is empty, 
or otherwise, particles stop with probability 1 - pt. Particles move or stop stochastically. In 
the limit of pt = 1, our model reduces to the ID deterministic simple-exclusion model. Near 
pt = 1, particles move close to the maximal current phase.  some particles stop temporarily. 
Then, a traffic jam (star-stop wave) and an empty wave are created at the same time. The 
start-stop wave consists of twq connected particles and propagates backward. The empty 
wave consists of two connected empty sites and propagates forward. When the start-stop 
waves collide with the empty waves, they disappear. The start-stop and empty waves appear 
one after another. Thus, introducing stochastic transition into the deterministic asymmetric 
exclusion model drives the system into a steady state. We study the scaling behaviour of 
the creation and disappearance of the start-stop waves in the steady state. 

Our stochastic CA model is defined on a ID lattice of L sites with open boundaries. Each 
site is either empty or occupied by one particle (or one car). For an arbitrary configuration, 
one update of the system is performed in pafallel for all c&. Particles move ahead by one 
step with probability pr unless the forward nearest-neighbour site is occupied by another 
particle, otherwise they stop with probability 1 - pt. If particles are blocked ahead by 
another particle, they do not move even if the blocking particle moves out of the site during 
the same time step. A particle is added at the inlet site 1 if the inlet site is empty. If the 
exit site L is occupied by one particle, its particle is removed from the exit site. 

3. Simulation result 

We have performed simulations of the stochastic CA model starting with an ensemble of 
random initial conditions where the system size is L = 103-105 and the initial density of 
particles is po = 0.0-1.0. Each run is calculated up to l@-105 time steps. For illustration, 
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Figure 1. The typical patterns of particles up to 500 time steps where b e  system size is 
L = 300. The horizontal and venial  directions indicate space and time kspectively. A particle 
is indicated by a dot. The trajectory of a particle is represented by a curve. The grey region 
is the area in which particles move with the interval of two sites. The black region represents 
the start-stop wave in which particles are stopped because their progress is blocked by another 
panicle. ( 0 )  The pattern for the Vansition probability pt = 0.99. The white region represents 
the empty wave. The start-stop and empty waves are crated at the same time. The star-stop 
wave disappears by colliding with the empty wave. (b) The pmem for the transition probability 
I t  = 0.9. 

figure 1 shows the typical patterns for the initial density po = 0.2 up to 500 time steps 
where the system size is L = 300. Patterns (a) and (b) indicate, respectively, those for the 
transition probability p t  = 0.99 and 0.9. The horizontal direction indicates the direction in 
which particles move ahead. The vertical direction indicates time. A particle is indicated by 
a dot. The trajectory of a particle is represented by a curve. In pattern (a), the grey region 
indicates that in which particles move with the interval of two sites. The local density of 
particles is p = 0.5. Particles within  the region move with the maximal velocity 1. The 
black region represents the appearance of a start-stop (or traffic jam) in which particles 
are stopped because their progress is blocked by another particle. The start-stop wave 
propagates backward and consists of two connected particles. The white region indicates 
the appearance of an empty wave which consists of two connected empty sites. Its empty 
wave propagates forward. The start-stop wave disappears by colliding with the empty wave. 
The coalescence process between the star-stop and empty waves is similar to a ballistic two- 
species annihilation reaction, A + B + @. The star-stop wave (or traffic jam) disappears 
with various Iifetimes. In the case of Apt(= 1 - p J  << 1 (pattern (a)). the mean density 
approaches the value f of a steady state. The star-stop wave appears clearly. Therefore, 
it is expected that the scaling phenomenon appears near pt = 1. However, in the case 
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(pattern (b))  in which the condition Apt << 1 is not satisfied, the density fluctuates largely 
and the coalescence process between the start-stop and empty waves becomes obscure. The 
process in pattern (b )  cannot be described by the ballistic annihilation process. Therefore, 
the scaling breaks down when the condition Ap, << 1 is not satisfied. 

Figure 2. The log-log plot af the typical lifetime (m) of start-slop waves against Apt(= 1-pt). 
The typical lifetime scales 3s (m) % Ap;'." i 0.04. 

102 lo  m 1 

F i y r e  3. The log-log plot of the cumulative lifetime distribution N, against lifetime m for 
Apt = 0.02, 0.005, 0.003, 0.001, 0.0005 and 0.0003. 

We study the scaling behaviour of the lifetimes in the steady state near pt = 1 after a 
sufficient number of time steps. We define the typical lifetime (m) of star-stop waves as 

m=l 
where m is the lifetime of the start-stop waves and n, i s~ the  lifetime distibution (the 
density of star-stop waves with lifetime m per one time step). Figure 2 shows the log-log 
plot of the typical lifetime (m) against Apt(= 1 - pJ. The typical lifetime (m) scales as 

(m) x Ap;" with U = 0.54 i 0.04. (6) 
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The scaling behaviour of the lifetime depends little on the system size L under the condition 
Apt << 1 and sufficiently large L. The cumulative lifetime distribution N, is defined as 

m 

Figure 3 shows the log-log plot of the cumulative lifetime distribution N, against lifetime 
m for Apt = 0.02, 0.005, 0.003, 0.001, 0.0005, 0.0003. We plot the rescaled cumulative 
lifetime distribution against the rescaled lifetime. Figure 4 shows the log-log plot of the 
rescaled cumulative lifetime distribution N,Ap;’.’ against the rescaled lifetime mApFs4 
for the data in figure 3. All data collapse onto a single curve. The cumulative lifetime 
distribution satisfies the scaling form 

“ ( A p t )  X A ~ : . ’ f ( m A p ? ’ ~ ) .  (8) 

Therefore, the lifetime distribution n, is described in terms of the scaling form 

(9) 

We study the scaling behaviour of the interval of start-stop waves in the steady state after 
a sufficient number of time steps. Its interval is the distance between a start-stop wave and 
the next star-stop wave. We define the typical interval (s) of start-stop waves as 

1.64 I N d A p J  % Apt f ( ~ A P ? ’ ~ ) .  

where n, is the interval distribution (or the density of start-stop waves with interval s). 
Figure 5 shows the log-log plot of the typical interval (s) against Apt. The interval (s) 
scales as 

(s) % App;”’ with U’ = 0.50 ?c 0.04. (11) 

The scaling exponent U‘ of the interval agrees with the exponent U of the lifetime within 
numerical accuracy. The cumulative interval distribution N,T is defined as 

.“‘=E 

where n, is the interval distribution. Figure 6 shows the log-log plot of the cumulative 
interval distribution & against intervals for Apt = 0.02, 0.01,0.005, 0.002, 6.001, 0.0005. 
We plot the rescaled cumulative interval distribution against the rescaled interval. Figure 7 
shows the log-log plot of the rescaled cumulative interval distribution NsApP;”so against 
the rescaled interval for the data in figure 6. All data collapse onto a single curve. 
The cumulative interval distribution satisfies the scaling form 

AG(ApJ % Ap:50g(sAp:so). (13) 

n,(Ap,) .% Ap:.og‘(sAp~so) .  (14) 

Therefore, the interval distribution is described by the scaling form 
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Figure 4. The log-log plot of the resded cumulative lifetime distribution NmApFt.' against 
the rescaled lifetime mAp?" for Ule data in figure 3. 

4. Discussion 

We discuss our results with the previous results obtained from other models. Krug and 
Sphon 191 gave a mapping between the rough surface problem and CA model 184. The 
mapping corresponds to the deterministic case of pt = 1. The random initial configuration 
with density 0.5 evolves to a particular configuration with the alternate spacing which 
corresponds to the flat surface. The configuration can be described as a pairwise ballistic 
annihilation process, the 'particles' and 'holes' ('traffic jams' and 'empty waves' in the 
traffic terminology used here) being pairs of 1's and 0 ' s .  In the process, pairs of particles 
and holes are not newly created and a random initial state is relaxed to the 'ordered' 
antiferromagnetic find configuration. In the present paper, pairs of particles and holes are 
created with a small probability Apt near p t  = 1. However, for pt < 1, the pairwise 
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Figure 6. The log-log plot of the cumulntive interval distribution N, against the interval s for 
Apt = 0.02, 0.01, 0.005, 0.002, 0.001 and 0.0005. 

' l- 

sApp.50 1 10 

Figure 7. The log-log plot of the rescaled cumulative interval distribution NsAp;".'n against 
the rescaled interval  SAP!'^'' for the data in figure 6. 

creation of particles and holes does not~always occur. The resulting problem near pt = 1- 
two-speed ballistic annihilation with pair creation-was studied in the context of ID crystal 
growth where the two species of particles correspond to up and down steps on the surface 
and pair creation corresponds to nucleation of islands [28]. 

Following the analysis of Krug and Spohn [28], we derive the value of the scaling 
exponent U. In the steady state, the particle and hole positions are uncorrelated and the total 
density in the steady state is obtained from a simple balance equation. Let p+> p -  denote 
the densides of the two species. In the steady state, the creation rate Apt is balanced by 
the painvise annihilation rate 2p+p- where the particles move with unit velocity. In the 
symmetric case p+ = p-  of interest here, this leads immediately to 

p = p + + p - = & .  (15) 
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Since the typical distance between traffic jams (s) % l i p ,  it follows that the exponent 
U’ = 112 in equation (11) exactly. Moreover, it is clear from the ballistic nature of the 
process that lifetimes and distances scale in the same way, so that U = U‘. Also, the 
exponent of the prefactor of the distribution (14) is simply set by the sum rule C s n s  = L 
to be 2u = 1. 

We consider the boundary condition. The open boundaries used here drive the system to 
the ‘critical‘ density 4 for pt = 1, as was first shown by Krug [29] for the fully-stochastic 
asymmetric simple exclusion process and therefore to ensure symmetry between ‘traffic 
jams’ and ‘empty waves’ (p+ = p-).  The same behaviour would be observed in a system 
with periodic boundary conditions prepared at density 112. 

We consider the limit of Apt = 1/L in which a car stops temporarily over L sites per 
unit time. By replacing Apt with 1/L in equation (6), the typical lifetime (m) of.traffic 
jams scales as 

(m) = L” with U = 0.54. (16) 

By replacing Apt with 1/L in equation (8). the cumulative lifetime distribution N&) 
satisfies the finitesize scaling form 

N,(L) = L+f(mL-”) with p = 1.1. (17) 

Similarly, by replacing Apt with 1/L in equations (11) and (13), the typical interval (s) 
and the cumulative interval distribution N,JL) scale respectively as 

These results (16)-(19) are consistent with the results obtained from the previous model 
[25] in which a temporary stopping of a particle was added to the 1~ fully-asymmetric 
exclusion model with open boundaries. The scaling relation j3 = 2u was derived from a 
simple scaling argument [25]. 

In the cumulative lifetime distribution (8), the scaling function f ( x )  is not power law 
even for x << 1. The scaling (8) is due to the creation and annihilation of traffic jams 
near pt = 1. For Apt << 1, the lifetime distribution scales by Apt. However, the lifetime 
distribution in the CA model of Nagel and co-worker [22,23] is presented by a power law. 
Traffic jams are not described by the ballistic annihilation process with creation. The scaling 
structure of our model is definitely different from that obtained by Nagel. Our model is 
very simple but the model of Nagel is complex. A comparison between our model and the 
model of Nagel is difficult since the definition of jam size in [22,23] is very different from 
the one used here. 

5. Summary 

We have presented the 1D asymmetric exclusion model with stochastic transition probability 
pr for freeway traffic. We found that near pt = 1, the star-stop waves appear with various 
sizes and the system is driven asymptotically into a steady state exhibiting a self-organized 
criticality. We have investigated the scaling behaviours of the lifetime and interval iqstart- 
stop waves. We have shown that the typical lifetime {m) and typical interval (s) scale as 
(m) c (s) xz Ap;” with U = 0.5. We found that the lifetime and interval distributions 
satisfy the scaling forms (9) and (14). 
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